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Abstract :  

Much attention has been given in the last several years to imitation processes for the modeling of 

social systems in economy as well as in anthropology, sociology and political science. But the 

diversity of mimetic rules employed by modelers proves that the introduction of mimetic processes 

into formal models cannot avoid the traditional problem of endogenization of all the choices, 

including the one of the mimetic rules. This article addresses this question starting from the remark 

that human’s reflexive capacities are the ground for a new class of mimetic rules. This leads us to 

propose a formal framework, metamimetic games, which advantage is to endogenize mimetic 

processes while being human specific. A computational study of a metamimetic game around the 

spatial prisonner’s dilemma is given as a first insight into metamimetic dynamics. 
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I. What do human’s meta-cognitive capacities bring about in 

mimetic processes? 

 

a. Mounting the evolutionary hierarchy 
 

Mimetism is considered as a key component in human social behavior (Girard 1961), 

and the sophistication of human mimetic processes could have been one of  the major 

evolutionary transition in hominization toward human’s social organization, as we know 

it (Donald 1993).  For these reasons, scientists more and more incorporate mimetic 

processes into formal modeling to account for the extremely rich structures observed in 

human’s social systems.  

But the diversity of mimetic rules employed by modelers proves that the introduction 

of mimetic processes into formal models cannot avoid the traditional problem of 

endogenization of all the choices, including the one of the mimetic rules. In the literature 

of social systems modeling, two main processes of imitation have been defined. (1): In the 

traditional conception of Homo oeconomicus, some researchers considered payoffs-biased 

imitation, i.e. imitation of the most successful agents in one’s neighborhood (Nowak & 

May 1992). (2): A growing number of contributions are attempts to introduce what is 

called conformism, in the study of social phenomena (Axelrod 1997 ; Bala & Goyal 2001 

; Galam 1998 ; Orléan 1998). Here, conformism is the propensity of individuals to adopt 

some behavior when it has already been adopted by some of their neighbors, the 

propensity being relative to the frequency of that behavior in the neighborhood. To a 

lesser extent, other imitation processes have been studied, among which we can mention 

(3): non-conformist, the propensity of an individual to adopt the behavior of the minority 

(Arthur 1994), or prestige (Henrich & Gil-White 2001). This list of imitation processes is 

far from exhaustive and we can already notice that even for conformism or payoffs-biased 

imitation, several technical definitions have been proposed, either deterministic or 

probabilistic (Nowak et al. 1994). On the other hand, it is also possible to propose models 

including several rules for imitation, as some authors already did (Boyd and Richerson 

1985; Henrich and Boyd 1998 ; Janssen & Jager 1999, Kaniovski et al. 2000). 
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 This raises an epistemological question for modelers. Which rule(s) for imitation 

should be considered depending on the social systems under study? Some scholars have 

addressed this question in an evolutionary perspective, assuming that the mimetic rules 

used were the result of natural selection processes (Henrich & Boyd 1998). But the slow 

dynamics of genetic processes seems to be in contradiction with the quick evolutions 

observed in social systems (Alvard 2003, Feldman & Laland 1996, Gould 1987, Gintis 

2003) that is mostly grounded on cultural evolution through cumulative learning. A more 

realistic view would be that the set of mimetic rules itself, depends on the culture under 

study, its history, and quick varying environmental conditions. If we can imagine that 

mimetic dynamics have been designed by genetic evolution, it is harder to believe that 

genetic evolution itself it directly responsible for changes in rules for imitation. The 

problem is here to find an appropriate top-level evolutionary process that could select 

mimetic rules while being compatible with observation in cultural evolution. 

 

b. Cognitive foundations 
 

Another way to address the question of endogenization of mimetic rules will 

perhaps come from a recent concern in social system modeling. The complexity of 

human’s social systems have no equivalent in others species. For example, considering 

group coordination, only insect’s societies, composed of very simple entities, have social 

structures involving several thousands members. This feature disappears as soon as the 

repertoire of behavioral possibilities of species get wider, and reappears only when it 

comes to humans (Bourgine 2003, Wilson 1975). This remark is noticeable because it is 

precisely modeling of self-organized systems in ethology that has been a precursor for 

multi-agents modeling in social sciences. It is clear that the goal for social systems 

modeling is not to consider humans as cloned insects. What is at stake is rather to find 

differences between humans and others mammals, which enable emergence of highly 

structured social groups, while keeping inter-individual heterogeneity. This has lead 

recently some modelers to propose, as an heuristic in social modeling, to consider in 

priority models that could be human specific (Alvard 2003, Bowles & Gintis 2003, Fehr 
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& Fischbacher 2003). In social sciences, a similar heuristic that particularly concerns 

mimetism, has been formulated few decades ago by René Girard2 (1978): 

 

 In order to elaborate a science of human, we have to compare 

human imitation with animal mimetism, precise human’s specific 

modalities of mimetic behaviors if they exist. 

 
Following this heuristic, we will thus look for differences between animal’s and 

human’s cognitive capacities that could have qualitative impacts on imitation processes. 

From numerous studies in psychology as well as in ethology, we can see that two 

elements are playing a crucial role in human behavior while being apparently out of reach 

of non-human cognition.  

 First, humans are reflexive beings.  To give a low level definition of reflexivity, it 

is the ability to take as object of cognitive treatment the cognitive treatments themselves 

by creating new levels of cognitive processing.  Emergence of reflexive capacities can be 

traced in ontogeny with the study of the development of infant’s cognitive capacities 

(Zelazo et al. 1996) and the self-triggered loop that should be the elementary component 

of reflexive processes is closely linked with the constitution of the self (Damasio 1999, 

Donald 1991). Reflexivity helps us to think others as we think ourselves and ourselves 

from other’s eye view and thus develop our social skill. From the imitation point of view, 

reflexivity makes all the difference since, as Eric Gans (1995) says, “prehuman imitation 

is non-reflexive; the subject has no knowledge of itself as a self imitating another”. 

 

The second difference between animals and human’s cognitive capacities, closely 

related to reflexivity, is metacognition (Donald 1991, Sperber 2000, Tomasello 2000), 

defined here as cognition about cognition.  Whether animals have metacognitive 

capacities is still in debate in this scientific community. Some experiments seem to 

indicate that great apes and dolphins may have some rudimentary metacognitive 

capacities (Smith et al. 2002, Rendell and Whitehead 2001), but those are very limited. In 

particular, there is no evidence that animals can consider learning or imitation processes 

as object of cognition, and to our knowledge, there is no experiment showing that 

                                                 
2 « Pour élaborer une science de l'homme, il faut comparer l'imitation humaine avec le 
mimétisme animal, préciser les modalités proprement humaines des comportements 
mimétiques si elles existent » 
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animal's could add voluntarily a metacognitive level to solve a given problem, although 

some primates seem to be able to deal with chains of hierarchically organized behaviors 

(Byrne 1998). This means that animal's metacognition, if it exists, is most probably 

constituted of rigid chains of process monitoring that can as well be hardwired, without 

requiring reflexivity to monitor their structure.  

There is no space here to give more details about these two differences. But we 

will try to show that taking them into account makes it possible to build a new class of 

models that may offer an answer to the problem of the multiplicity of mimetic rules. 

 

 

II Reflexive mimetic rules and endogenization of meta-choices 

 
Introducing metacognition and reflexivity in formal models reveals two 

phenomena. First, imitation rules can be identified as cognitive objects, modifiable by 

way of cognitive treatments like imitation processes. Second, an imitation rule can be 

reflexive in the sense that it can participate to its own modification. To go further in that 

direction, we have to be more precise on what we will consider to be an imitation rule. 

We will give here a definition that fits a multi-agents perspective.  Before that, we will 

expose briefly the prisoners dilemma game that will be our standard example when we 

will need to fix ideas with a concrete case. 

a. A brief description of the prisonner’s dilemma game 
 

The prisonner’s dilemma game is a two-players game where players have to 

choose simultaneously one of the two options: to defect (D), or to cooperate (C). The 

dilemma lays in the fact that option D leads always to the highest reward whatever the 

other does - rewards associated with playing D are T (temptation to defect) when playing 

against a cooperator (who wins S with T>S), and P when playing against a defector (who 

also receives P). But when both players cooperate, they receive R>P. This means that 

mutual cooperation is more advantageous than mutual defection (collective rationality), 

but given the opponent’s action, defection is individually more advantageous than 

cooperation (individual rationality). The situation is usually synthesised by the following 

table: 
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player B→

↓ player A
B plays C B plays D 

A plays C A & B win R A wins S & B wins T 

A plays D A wins T & B wins S A & B win P 

 

With the following relations on T, R, P and S: 

 T > R > P > S , and  

T + S < 2R (mutual cooperation is the best you can do collectively). 

The consequences of a prisonner’s dilemma situation is that if a player is rational 

and greedy, the best he can do is to play D, because whatever his opponent, the payoffs 

associated with action D will always be higher than the those associated with action C (T 

>R and P > S).  Consequently, if both players are rational and greedy, they will both 

defect and loose the advantage of mutual cooperation (P<R). Thus in this game individual 

rationality is in conflict with collective rationality. It should be noticed however that 

agents can have various rules for deciding which behavior to adopt that are not 

necessarily payoffs maximizing. They can for example be altruists, willing to maximize 

other’s payoffs, or conformist, willing to do as the other do.  This point will be detailed 

below. 

In the following, we will consider an N-players iterated prisonner’s dilemma, 

which means that players are playing several rounds in a row, with several players each 

round.  We will refer to this game as game G. At a given round, the behavior of a player 

will be the same with all its opponents3 (C or D), which means that the current state of an 

agent can be described by a set of parameters (b,r,g) where b is its current behavior (or 

last action C or D), r the rule it used to choose this action (payoffs maximizing, altruism, 

etc.) and g the payoffs it obtained playing b last round.   

 

b. Artificial agents 
 

We will know give some definition that will be useful in the following. First of all, we 

will consider agents that are defined by a collection of traits. These traits will be 

categorized in modifiable traits and other traits. 

- Modifiable traits are those that an agent can change voluntarily. This is the case 

for example, for a cooperative vs. defective behavior, the colors of clothes, the 
                                                 
3 This is a classical situation in Public Good Games or Common Pool Resources. 
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political party the agent decides to vote for, the strategy it chooses, or the learning 

rules adopted for a given task, etc. Most of the time, these kinds of changes take 

place on small time scales (within a day). The set of modifiable traits   of a given 

agent A can be represented by an ordered set sA=(  of A’s choices for 

the different categories of modifiable traits.  

mod1 ),...., Tm ∈ττ

We will note  the set of modifiable trait categories. For example, in game 

G, ) ={‘behavior’, ‘rule for imitation’} with behavior={C,D} and rule for 

imitation={copy the best action of previous round, do what the other did last 

round, etc.}. 

)( modTK

( modTK

- Other traits are those that do not entirely depend on agent’s will. They depend on 

global dynamics and change generally on larger time scales (months, years, life), 

like social positions, payoffs, reputation, prestige, age, etc. For example, in game 

G,  payoffs (g) are the only category other trait. 

 

A state of the world ω  is the list of all the traits that characterize the agents and their 

environment. The set of all possible worlds will be noted Ω . Agents will represented by 

ordered sets. The first components will represent their modifiable traits, that taken as a 

whole will be called their strategies. The last components will represent the other traits 

(their payoffs, prestige, etc.).  As we saw it, in game G, an agent can be represented by an 

ordered set (b,r,g).  Then in game G, a state of the world is the list of all ordered sets 

defining the agents, and particular strategy is a couple (b,r). 

 

Agents become aware of perceived traits through the social network they are 

embedded in.  For a given agent A, the set of all agents from which it can learn some 

traits, by any mean, will be called its neighborhood: VA. Agents categorize their 

neighborhood in sub-neighborhoods on the basis of the perceived traits. 

For example, Cavalli-Sforza and Feldman (1981), Boyd and Richerson (1985) 

consider different types of cultural transmission processes within sub-neighborhoods 

indexed on age and kinship:  vertical transmission from parents to offspring, oblique from 

elders to younger, and horizontal among peers.  

VA can also contain unidirectional links, like those that are defined by the media 

network that is known to be an important factor of social influence (Bandura 1977) 
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Given all this, we are now able to define what we will consider as rules for imitation: 

 

Definition: Rule for imitation 

 A rule for imitation is a voluntary cognitive process that given an agent, a state of 

the world, and a category of modifiable traits, produces as an output, the set of 

agent’s neighbors that will be taken as reference for the modification of the 

modifiable trait of the given category, as well as the process for this modification. 

 

 

Consequently, the imitation rule of an agent A can be represented by a function 

. We will note R the set of all possible imitation rules.  modmod)(: TTKr →×Ω

For example, if the modification process consists in pure copying, the simpler 

definition of conformism is ‘copy the behavior of the majority of agents in your 

neighborhood’. The simpler definition of payoff-biased imitation is ‘copy the behavior of 

the most successful agent in your neighborhood’. Etc. Imitation processes, as we defined 

them, are part of the category of cultural learning processes that Tomasello (2000) 

defines as “intentional phenomena in which one organism adopts another’s behavior or 

perspective on some third entity”.  They differ from individual learning in that a mediator 

is needed for the learning. They differ from other cultural learning processes (exposure, 

priming, emulation, mimicking) in that they are voluntary and concern surface behaviour 

as well as goals and processes.  

 

From this definition, we see that only modifiable traits are submitted to imitation 

although any trait can be used in the definition of the imitation rule. There are potentially 

as much imitation processes as modifiable traits, and an agent can use the same imitation 

rule for several modifiable traits. Here, the fact that a rule for imitation takes as input the 

set of categories of modifiable traits rather than a single modifiable trait is essential.  This 

means that the same rule for imitation can be use to update several kinds of traits which 

could be qualitatively of very different natures.  For example, if you are looking for 

prestige you might be willing to copy most prestigious person within your neighborhood, 

having the same education, the same job, the same car, etc. In that case, applying for a 

particular job or buying a particular car will be part of a single global goal. 
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c. Metareflexive mimetic systems  
 

When we look at mimetic behaviors in systems of N agents doted with 

reflexivity and metacognition, we get what we call metareflexive mimetic 

systems. In those systems, rule for imitation are identified as cognitive 

processes and thus become modifiable traits ( ). They can 

consequently be controlled by others imitation rules (fig. 1.b.2) in a 

hierarchical way (metacognition). This means that with metacognition, 

imitation rules are modifiable traits by way of meta-rules application (fig. 1-b-

2). We can then imagine mimetic systems with several levels organized 

hierarchically. To a given modifiable trait, we can associate a metamimetic 

chain that controls its expression. For example, in game G you can imagine that a

has the following 2-leveled hierarchy: top-level rule: imitate the winner (payof

imitation), first level rule : do as the others did (because this rule happened to be t

successful), behavior: play C (cf. fig. 2). This kind hierarchical organization 

frequent in modeling literature, the originality of our approach lays elsewhere. 

)mod(TKR⊂

 

 

If our aim is built a model of human behavior, we have to respect what is c

accepted as modeling constraints, and in particular, our agents must have a b

rationality.  The consequence is that metamimetic chains have to be finite. For 

level rule, we face three alternatives. Either we postulate a fixed exogenous ru

genetic regulation mechanism. These are the two options taken respectively b

theory and evolutionary game theory.  This would put the top-level rule in the c

other traits. But there is a third alternative. Since agents are reflexive, they ca

cognitive process reflexively. According to  the definition we gave of a rule for im

this means that among the categories an imitation rule can take as inputs, we 

category ‘top-level imitation rule’. Thus, a top-level rule for imitation can

reflexively by acting on itself as a modifiable trait (fig 1-c). We will say that ag

metareflexive.  
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Figure 2 : The building blocks in metamimetic games  

 

 

In metareflexive systems agents can thus have chains of behavior monitoring 

potentially including   several meta-levels. The question is now how agents change the 

structure of these chains, their length as well as our composition. We will now propose 

some transition rules for these chains that will define a game we will call the metamimetic 

game. We choose these rules to be as simple as possible and to coincide with standard 

rules of revision under imitation where this makes sense.  

  

Consider a population of agents that can deal with a maximum of n meta-levels (bounded 

rationality). Call n the cognitive bound of agents. Consider for clarity that agents have to 

choose a behavior r0 for a single type of action (like playing C or D).  Agents will then be 

defined by a set of modifiable traits (r0,r1,.. rk,) with k≤n, where r0 is a behavior and rj are 

some metamimetic rules.  Let for example consider an agent A with a cognitive bound of 

two playing at the game G and suppose that A is defined by the metamimetic chain (r0,r1) 

where r0 =D and r1 is a payoff-biased mimetic rule (copy the best agents). We have to 

define the way this agent updates its different modifiable traits at the different levels.  

We have already said that the update of a modifiable traits at and intermediate 

level (r0 for example) has no reason to differ from what has been already considered in 

literature. This kind of updates can be defined in the following way: 
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Revision by imitation of a modifiable trait at intermediate level (Figure 3) 
The revision of a modifiable trait of level 1−Nc  by 

the meta-rule of level k can be decomposed in the 

following steps: 

- rk is used to update the modifiable trait of level 

k-1. 

- If during this process, A actually chooses to 

change its modifiable trait of level k-1, then two 

possibilities arise.  Either the trait of level k-1 

belongs to the category ‘behavior’, and the 

process stops here, or this trait is itself a 

metamimetic rule, and the agent engages in the 

revision of the trait of level k-2.    

 

Figure 3 : Update of an 
intermediary modifiable trait. A 
conformist Agent A observes that the 
majority has changed for C, and 
decides to play C. 

 

 

Reflexive Update 
Reflexive updates take place at the top level of a metamimetic chain. Top-level 

rules are the most important rules in metamimetic chains since they ultimately determine 

their dynamics. The way a top level rule evaluates neighbors in a mimetic process is 

somehow the most important goal for the agent. Suppose that after evaluation, an agent A 

comes to the conclusion that from its point of view, agent B is the most successful in its 

neighbourhood. We will have to distinguish two cases in function of the size |cB| of the 

metamimetic chain of agent B.  
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First case: Partial metareflexive update (|cB|<n) 

A is able to monitor a B-like top-level 

rule under its own top-level rule rk. Then, B 

top-level rule is viewed as a mean, eventually 

temporary, to achieve the goal defined by rk. 

For example, if in game G, A is a pure maxi-

agent (using a payoffs biased rule) that has a 

cognitive bound of two or more, and if it 

happens that a pure conformist agent B is 

indeed the most successful, then A will perhaps 

adopt the conformist rule at its first meta-level, 

keeping in mind that it is only a strategy to 

maximize payoffs (cf.Figure 4). The payoffs-

biased rule will then jump to the second meta-

level and A will be conformist as long as it will 

be an efficient strategy.  

 

Figure 4 : A case of partial metareflexive update. 
At time t, a Maxi agent A has a conformist neighbour 
that is strictly more successful than all of its other 
neighbors. A will then adopt the conformist rule at its 
first meta-level, keeping in mind that it is only a 
strategy to maximize payoffs (second meta-level). 
Thereafter, it might be that according to this rule, the 
current behavior is not the best one, and has to be 
changed. A will be conformist as long as it will be an 
efficient strategy.  . 

 

 

Second case : full metareflexive update (|cB|=n) 

Imagine that the most successful 

agent in A’s neighbourhood is using a 

metamimetic chain of length n. Then, if A 

really think that such a structure is needed to 

have the same performance than B, A will 

have to revise entirely its metamimetic chain, 

i.e. A will have to change its top-level rule.  

For example, in the case of the game G 

mentioned above, it is possible that a maxi-

agent A with a cognitive bound of only 1, 

finds out that one of its conformist neighbour 

have higher payoffs than any other agents, 

itself included. To be like B, A will then have 

no other solution than to become conformist (Figure 5).   

 

Figure 5 : A case of full metareflexive update. At 
time t, a Maxi agent A has a conformist neighbour 
that is strictly more successful than all other 
neighbors. Consequently, A adopts the conformist 
rule. Thereafter, it might be that according to this 
rule, the current behavior is not the best one, and has 
to be changed. 
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Metareflexive updates happen when, after observation of the environment, the 

metamimetic chain of the agent is not self-coherent. In a way, we can say that the change 

is motivated by a cognitive dissonance. Contrary to intermediary updates, the all structure 

(length and/or composition) of the metamimetic chain might change in such updates. In 

particular, it may happen that the changes needed are so deep that the agent has to revise 

entirely its metamimetic chain, top-level rule included. This happens when the agent 

reaches the bound of its cognitive capacities and cannot manage both new goals and old 

ones.  Metareflexive update is the core of metareflexive mimetism since has we will see, 

it is what enables endogenous setting of mimetic rules. 

 

 

III The metamimetic game  

a. Axioms 
 
If we specify the maximum number of meta-levels and adopt the transition rules 

described above, we get the definition of metamimetic games:  

 

 Definition: Metamimetic game 

 A metamimetic game is a N-players game where agents are imitators and 

metareflexive. More over, the  three following conditions should be satisfied: 

C-I  - Bounded rationality: in metamimetic chains, the number of meta-levels is 

finite and bounded for each agent by a fixed integer, its cognitive bound (Bc). 

C-II  - Metacognition: at all levels in a metamimetic chain, rules for imitation are 

modifiable traits by way of meta-rules application. (If is the set of all possible 

rules for imitation at level n then ). 

nR

)(, modTPRi in⊂ℵ∈∃

C-III – Reflexivity: the last level of a metamimetic chain updates reflexively, 

changing the length of the metamimetic chain in the limit of the cognitive bound of 

agents. When the cognitive bound is reached, top-level rules update themselves 

(reflexivity of imitation rules).     

 

 



DRAFT MAY 2004 

In metamimetic games agents will be characterized by a set of metamimetic chains, 

which, for an analogy with game theory, can be viewed as representing embedded 

metagames. The study of metamimetic games will thus consist in the study of the 

evolution in length and composition of these chains, leading to the emergence of 

structures, at the intra-individual level as well as at the inter-individual level.  

 

b. The unsatisfiability 
We will now briefly develop a formalization for metamimetic that will be useful in 

understanding the global dynamics of meta-rules. In metamimetic games, individuals 

come to change their modifiable traits when discovering that they are poor performing 

compared with neighbors. This leads us to define the notion of unsatisfiability: 

  

Definitions 

Unsatisfiability: Let c=(r0,r1,.. rk,)  be a metamimetic chain of an agent A. We will 

say that A is unsatisfied if there exist a neighbour A’ of A, with a metamimetic 

chain c’ c, such that evaluated by A, A’ performs strictly better than A. The 

individual unsatisfiability of agent A will then be defined as the probability 

for A to be unsatisfied. It is the sum on the set of metamimetic chains c’ present in 

A’s neighbourhood (V

≠

)(cf

A) of the probabilities that A adopt c’, . 

If we look at this phenomenon at the population level, we get the notion of 

unsatisfiability of a metamimetic chain c by a metamimetic chain c’, . If we 

write c

( )cccPcf AcA ≠→= ')'(,

)'(cFc

A the metamimetic mimetic chain of agent A, we have:  

∑∑
=

≠∈ ∧
=

ccA
ccVc

cAc
A

A
cfcF

,
''

, )'()'( . 

It is the probability that an agent A with the chain c will adopt the chain c’. 

Finally, we get the definition of the unsatisfiability of a metamimetic chain c :  

∑
≠

=
'

)'(
cc

cc cFF  

In the same way, we define the n-unsatisfiability of the top n components of a 

metamimetic chain (*,c)=(*,rk-n …,rk)   as the probability that one of the n top 

meta-rules in chain C will be modified in an update. For example, we can speak of 

the unsatisfiability of a (D,maxi) agent, or of the 1-unsastisfiability of maxi agents. 
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Relative unsatisfiability : To understand the dynamics of metamimetic games, we 

have to be able to compare the unsatisfiability of different types of chains 

according to their frequency. The idea is that the proportion of a given type of 

metamimetic chain will be stable if there are, in mean, as many agents that adopt 

this chain than agents that quit for another chain.  

In the case of discrete time dynamics on discrete populations, we can write the 

equation for the evolution of the proportion of c metamimetic chains : 

∑∑∑∑
≠

∈
=

≠∈
+−=∆

∧
ccA

Vc
t

cA
ccA

ccVc
t

cA
t

c
A

A
A

A
cfcfp

,
',

,
'' , )()'(  

If we write pc
t the proportion of chains c at time t in the population and  define the 

relative unsatisfiability by: 

∑
≠

−=
cc

t
ct

cctc

t

c cFpFpF
'

''
^

)(.  

the master equation of metamimetic games can then be rewritten :   

t

c
t

c Fp
^

=∆  

 

 

This equation defines dynamical processes that belong to the class of replication by 

imitation (see for example Weibull 1995). However, they correspond to none of the 

processes already studied, which are more or less are equivalent to the replicator 

dynamics. It can be shown easily from these equations (see annexes) that the discrete 

replicator dynamics (see for example Hofbauer & Sigmund 1988, Weibull 1995) is a 

particular case of metamimetic dynamics where there is only one meta-rule, which imply 

that metamimetic dynamics are not reducible to replicator dynamics. 

   

We expect that the study of these meta-dynamics as defined above will be of high 

interest to understand social dynamics. In this perspective, there would be a lot to say to 

link metareflexive mimetic systems with existing theories of social cognition. First, things 

are surely not as black and white as our description of metamimetic chains and their 

evolution. However, we think it is a good starting point. Second, if metamimetic games 

are to be a part of a general model of social cognition, we will need to specify their 

articulation with existing theories of inference, memory and learning.  
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In particular there would be a lot to say about the relation between metareflexive 

mimetism, which is backward looking, and fictious play, which is forward looking (see 

for example Young 2001), in the process of decision-making. We can reasonably think 

that both processes are complementary, acting in parallel,  and can be unified in a single 

framework. Such an approach is desirable but is beyond the scope of the present work. 

We let this for future research. Nevertheless, we can notice that in the framework of 

standard game theory, agents don’t change their goals and preferences during their life, 

which was stressed to be one of the limits of the theory (Bowles 2001, Gintis 1998, 

Henrich et al. 2001, Lessourne 2004). On the contrary, evolution of individual 

motivations is the most important feature in metareflexive mimetic systems (condition C-

III). Consequently, we might expect that the cross fertilization between metareflexive 

mimetism and game theory will provide an interesting approach to the modeling of the 

evolution of preferences. 

 

For the end of this paper, we will abstract away from these complications to focus on 

a first example of metamimetic game that is an extension of the spatial prisonner’s 

dilemma. This will help us to have a first intuition of what kinds of dynamics we can 

expect to find. 
  

IV The Spatial Dilemma Game in metamimetic framework 

 

To give a first idea of the properties of metareflexive systems we will see here an 

example of a  metamimetic game with an extension of the spatial prisonner’s dilemma 

game (Nowak and May 1992). First of all, it is important to stress that metareflexive 

mimetism could be seen as a way for embedding other models, or as a plug-in to add to 

existing ones. It is not aimed at replacing any existing theory. Consequently the aim here 

is not to give a fully integrated model of human behavior, but to show how we can embed 

a given model in the metamimetic framework. Here, it will obviously not solve the 

original limitations of the model of Nowak and May – exogenous network, absence of 

individual learning, and pure copying mechanism without inference processes – but we 

will see that the dynamical properties of metamimetic games and in how, in the particular 
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model of the spatial prisonner’s dilemma, it can account for sustainability of a certain 

levels cooperation  under all range of the parameters studied. 

  

The problem of emergence of cooperation and its sustainability is an active domain of 

research with still a lot of open questions (Hammerstein 2002), especially in the domain 

of human cultural evolution. The standard model for cooperative interactions is the 

prisonner’s dilemma, which we described in section II-a. Nowak and May (1992) 

proposed a spatial version of the prisonner’s dilemma game based on memory less agent 

guided by payoffs-biased imitation. The interest of such spatial game is that it illustrates 

the spreadingof behaviors among populations, revealing very interesting phenomena. 

 

 There has been a lot of developments based on the spatial prisonner’s dilemma game  

(Brauchli 1999, Duràn 2003, Lindgren & Johansson  2002, Nakamaru 1997,  Nowak et al. 

1994), studying the sustainability of cooperation under various conditions. These studies 

often consider more sophisticated agents than those of the original model. Coming back to 

the model of Nowak and May will thus enable us to see the pure effect of reflexivity, 

without any further sophistication. Moreover, as we will see, the spatial settings of Nowak 

and May are the worst situation for cooperation since agents cannot discriminate between 

neighbors. 

a. The model of Nowak and May 1992 
The original model of Nowak and May (1992) considered memoryless players 

choosing between two simple strategies: always cooperate (C) or always defect (D). 

These players are placed at the nodes of a two dimensional toric grid, the game is 

organized in rounds and agents are interacting repeatedly in discrete time. Each round, 

agents play a prisonner’s dilemma game (as describe in II-a) with the same strategy (C or 

D) against each of their eight  closest neighbors (players in the eight adjacent cells) plus 

themselves. Between two rounds, players compare their payoffs with those of their eight  

neighbors. In case one neighbour is strictly more successful than all other neighbors 

(themselves included), they adopt its strategy (payoff biased imitation). 

 

This kind of settings illustrates situations where individual’s interests are in 

conflict with the collective interest and where you cannot interact selectively with your 

neighbors. Cooperation benefits to all your neighbors and defection punishes all of them. 
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It is consequently the worst case for cooperation. This illustrates common pool resources 

dilemma (Ostrom 94). For example, agents can be farmers pumping underground water 

diminishing the stocks of their neighbors. In a drought period, if agents do not respect 

water restrictions they will dry-out the soils. Then, only those who will have made water 

stocks will still have water left. But the collective interest is that every body pumps water 

in reasonable quantities, so that underground water stays available all the time.  

 

Nowak and May studied this spatial game with the particular conditions S=0, 

P=0, R=1 and T>1. Although this is not a prisonner’s dilemma game (P=S) they assumed 

that their finding were not qualitatively altered if P=ε with ε positive but significantly 

below unity.  In this case, the dynamics reported is two folds (more details will be found 

in Nowak and May 1993,  Nowak et al. 1994): for p<1.8 or p>2, the dynamics converges 

almost always toward a stable state, where for p<1.8 cooperator generally are 

predominant, while for p>2 defectors are generally predominant. The most interesting 

regime is for 1.8<p<0.2 where we can observe dynamic pattern of cooperator areas and 

defector areas evolving in a chaotic way, but keeping on the long run the rate of 

cooperation constant at a level around 31.2%. It is this kind of dynamics that made the 

success of this model since it exhibits complex patterns with heterogeneous population, 

and consequently a certain amount of cooperation, in an area where the social dilemma 

was quite important (the advantage of defection almost twice the advantage of 

cooperation). However, the standard parameters for the prisonner’s dilemma game are 

T=5, R=3, P=1 and S=0 which in the notations of Nowak and May correspond to b=5/3 

and ε=1/3. How robust are their findings in this case? We did a computational study with 

the multi-agents plateform designed to simulate metareflexive mimetic systems. We first 

make sure that we could correctly reproduce Nowak and May results (see web appendix 

http://chavalarias.free.fr/metamimetism.htm). Then we did a computational study for b=5/3 and 

ε=1/3. Our results are clear (Figure 6) 

1- In the case b=5/3 and ε=1/3, the chaotic regime disappears. 

2- If we avoid the particular value of b for which there are ties, the dynamics 

converges toward a static state mostly cooperator for b<1.33 and a static state 

mostly defector for b>1.33. 

3- This threshold falls at 1.1 if we do not consider self-interaction. 

 

 

http://chavalarias.free.fr/metamimetism.htm
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An extensive study of the behavior of spatial games with the settings of Nowak and May 

for a large area in the parameters space of the matrix of the game can be found in Hauert 

2001. It confirms the fact that chaotic dynamics cannot be found in prisonner’s dilemma 

game (except for very low strength of social dilemma). Consequently, the interesting 

pattern emergence described by Nowak and May is specific to the game they choose 

which has definitely not the same dynamics than a standard spatial prisonner’s dilemma. 

By passing, payoffs-biased imitation is not sufficient for the sustainability of cooperation 

in spatial prisonner’s dilemma game with such settings. 
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Figure 6 : Evolution of the rate of cooperation in funtion of T at the attractor  in Nowak and May 
model for P=1/3, R=1 et S=0. Initial conditions where random uniform with 50% of cooperators. Left : 
The game with self-interaction. Right: the game without self-interaction. The chaotic regime has 
disappeared. The final state is either almost all D or all C.  

 

b. The metareflexive prisoner 
 

We will now study a game that is the natural 

metamimetic extension of the precedent model. The general 

settings will be the same except for the fact that the matrix of 

the game will be a prisonner’s dilemma game; we will not 

consider self-interaction and the mimetic dynamics will be 

those presented in section II-a. We will consider mimetic 

rules that are modifiable traits (condition C-II, metacognition) 

and update reflexively (condition C-III, reflexivity).  To keep 

the same agent structure as Nowak and May, we will take 

agent with a cognitive bound of 1 (figure 7). We thus get the 

simplest structure for a metareflexive agent. The two 

categories of modifiable traits of the game are the behav

Consequently we have K(Tmod)={‘behavior,’meta-rule’}. Payoffs

 

Figure 7 : the simplest 
structure for a metareflexive 
agent : one behavioral level 
an one meta-level. 
ior and the meta-rule. 

 are in the category other 
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traits. An agent is then characterized by a set (r0,r1,g)∈R0×R1×ℜ and its metamimetic 

chain is (r0,r1). For sake of readability, we will write these chains c=(b,r). Agents will 

perceive all kinds of traits i.e. the meta-rules, the behaviors and the payoffs of their height 

neighbors. As in Nowak and May, we will take R0={C,D}. As for the set of metamimetic 

rules, we will consider the simplest rules that can be built from the perceived traits.  We 

can relate these rules to the most frequent rules considered in literature:  

1. Maxi rule: “copy the modifiable trait of your neighbour with the maximum 

payoffs” (i.e. the payoffs biased rule of Nowak and May). This rule characterizes 

selfish agents. 

2. Mini rule: “copy the modifiable trait of your neighbour with the minimum 

payoffs”. This rule can be related to altruist or generous rules. 

3. Conformist rule: “copy the modifiable trait used by the majority of agents”.   

4. Non-conformist rule: “copy the modifiable trait used by the minority of agents” 

5. Random rule: “copy a modifiable trait at random” 

 

We have R1={Maxi, Mini, Conformist, Non-Conformist, Random}. 

We would like to insist on the fact that these rules apply to categories of modifiable traits 

and can be used for the update of a trait of any category. For example, a conformist agent 

will copy the most common behavior when updating its trait of category ‘behavior’, and 

will copy the most common metamimetic rule in neighborhood when updating its trait of 

category ‘metarule’. 

c. Computational Study 
We will now give some computational results. The idea is to study the evolution the 

different proportions of rules and behavior with time under various environmental 

conditions. As in Nowak and May’s article, we consider here parallel updating but we 

checked that the dynamics is qualitatively the same in continuous time. Making them 

endogenous could in fact elude the problem of the update frequencies constants, which is 

a natural operation in our framework. The idea is to say that the frequency of the reflexive 

update and the update frequency of the modifiable trait are part of the description of the 

rule and consequently, are copied with the rule, eventually with some errors. This is an 

interesting option but for sake of clarity, we will discard it in this paper. In the following 

simulations, we will then consider parallel updating: at each period, each agent updates 

reflexively its meta-rule and then updates its behavior. Since agents’ cognitive bound is 1, 
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agents will have no choice other than full reflexive updates when revising their meta-

rules. 

 The complete description of the algorithm used for these simulations can be found 

in appendix. We will present computational results in the following way :  

α - A detailed study for a the standard setting of the prisonner’s dilemma game: 

T=5, R=3, P=1 and S=0, and an initial rate of cooperation (Inicoop) of 30%   

  β - A study of the influence of the advantage of defection on cooperation as 

determined by the matrix and the initial rate of cooperation, on the dynamics 

outcomes (Cartography of attractors). 

α - A particular case 
 The first results presented here have been done with the five rules mentioned above. 

Population size is 10 000 agents. As initial conditions, we took a uniform distribution for 

metamimetic rules, and a level of cooperation of 30% uniformly distributed in the 

population. The first striking phenomenon is that the system reaches very quickly its 

unique attractor (fig. 8 & 9), which is mostly static (only a few number of oscillators). 

This means that at the attractor, the unsatisfiability of most agents is zero. They thus 

perform repetitive behavior.  

Moreover, the path to this attractor is mostly the same along the different 

simulations, with a very low variance on the distributions of imitation rules and strategies. 

Here, graphs show the evolution until 100 periods, but we checked the stability of the 

attractor for large time scales. This attractor is heterogeneous for both distributions of 

imitation rules and strategies, with formation of stable clusters of cooperators (cf. fig 10 & 

11). As we saw in last section, cooperation wouldn’t have been sustainable if there were 

only maxi-agents. Here the rate of cooperation increases from 30% to 42% during the 

simulation.  

We can also notice that the random rule completely disappeared at the attractor. 

This emphasizes a characteristic of meta-dynamics:  top-level metamimetic rules should 

be their own preferential trait at the attractor. Since this is never the case for the random 

rule, which chooses indifferently among rules present in the neighbourhood, it is bound to 

disappear. Metamimetic dynamics allow stochastic rules but at intermediate meta-levels, 

which are not permitted here. Consequently, in the following simulations, we won’t 

consider random-agents any more. In the same way, we can check that at the attractor the 

situation make sense for agents when compared with the goals they have: non-conformist 
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are actually locally in minority, conformist are actually locally in majority,  maxi and mini 

agents have interlaced populations and are locally the most (resp. the least) successful 

agents (cf. fig 10). 

 

 

10 20 30 40 50 60 70 80 90

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

Random 
Maxi 
Mini 
Conformists
Non-conformists

Time 

Pr
op

or
tio

ns
 o

f m
et

a-
ru

le
s 

 

Figure 8 : Statistics on the evolution of of metamimetic 
rules for the game defined by T=5, R=3, P=1 and S=0. 
Initial conditions are a uniform distribution of metamimetic 
rules and 30% of cooperators. The distribution of rules 
quickly converges to the attractor where conformists (up 
triangles) dominate.  The Random rule disappears. Error bars 
represent the standard deviation (50  runs, 10 000 agents 
each). 
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Figure 9: Statistics on the evolution of cooperation. 
The rate of cooperators increases from 30% until 
population reaches a level of 41% of cooperators. Error 
bars represent the standard deviation (50 runs, 10 000 
agents each). 

 

 

Figure 10: The spatial distribution of metamimetic 
rules. Each small square represents an agent. (here 10 
000 agents on the toric grid). At the asymptotic state, 
non-conformist agents are actually locally in minority 
(black squares), conformist agents are actually locally in 
majority (white clusters). Mini (blue or light grey) and 
maxi (red or dark grey) agents have interlaced 
populations. 

 

 

Figure 11: The spatial distribution of behaviors at the 
attractor. We can observe the emergence of sustainable 
clusters of cooperators (green or light grey). 
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β - Cartography of attractors 
To study the influence of the initial rate of cooperators (IniCoop) and the strength of the 

temptation for defection on the dynamics, it is more convenient to consider a matrix of the 

game described by only one parameter. It is well known that two parameters suffice to 

describe the whole set of distinct games. The problem now is to select a subset of this 2D 

space that would nevertheless generate all the interesting dynamics. For this purpose, we 

will take a parameterisation frequently used in the social dilemma literature associated 

with the following payoffs matrix:   

 
Agent B  

------------ 

↓ Agent A 
C D 

C (1-p,1-p) (0,1) 

D (1,0) (p,p) 
Table 1 : The matrix of the game 

 

We will assume that 0<p<0.5 so that the condition T>R>P>R is satisfied. The 

condition T+S<2R is violated (we have equality) but it doesn’t have noticeable 

consequences on the dynamics. This condition expresses the fact that there is no way that 

two players could share their rewards so that it would be more advantageous for them to 

have distinct behaviors (D and C) than to cooperate. Since in our game, such a share is 

impossible, this condition is not very important. 

 

In this spatial game, the payoffs of an agent A with a neighborhood VA is thus (where bB is 

the behavior of agent B):  

- If A played C : ∑
=∧∈
−=

CbVB
A

BA

pCg )1()(  

- If A played D : ∑∑
=∧∈=∧∈

+=
DbVBCbVB

A
BABA

pDg 1)(  

 

We can check that we have, whatever the composition of neighbourhoods. A 

quick study of this setting in the case with only maxi-agents will reveal quite similar 

)()( DgCg AA <
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dynamics to those presented in IV.1. with a threshold at 0.2 : under initial random 

conditions of 50% of cooperators, for p<0.2 cooperators invade, for p>0.2, defectors 

invade. We will now see what happens when agents are metareflexive. 

 

We did a study similar to the case presented in paragraph IV.1-α, for Ini Coop varying 

between 5% and 95% and parameter p varying between 0.1 and 0.45. The same 

qualitative properties were observed concerning the attractors but the full description of 

these results falls beyond the scope of this article and will be found in further papers (see 

web appendix for the full graph). We will just give here a rough description of the 

metamimetic dynamics observed.  

Behavioral level : The rate of cooperation at the attractor is plotted on Figure 12. 

We can see that this rate is always above 9,5% and above 40% in the majority of 

the cases. Attractors at the behavioural level depend heavily on IniCoop for low p 

but are almost independent of IniCoop for p>0.2. On the contrary, p has always a 

great influence on these attractors. Even if there is no space to develop the point 

here, it is noteworthy that the high level of cooperation for most of the parameters 

space is a very interesting result in the perspective of the emergence of 

cooperation.  

 

Meta-rules level : Here Inicoop has even less influence on the meta-rules than  

ithas on behaviors (see web appendix for more details). The proportions of 

conformist agents decrease when p increases, while the opposite phenomenon 

happens with maxi and mini agents. If conformistagents are always the population 

with the highest density (cf. Figure 13), there is a significant proportion of maxi and 

mini agents for p>0.2 (more than 20% for each population). On the contrary, the 

proportion of non-conformists is not sensitive to p and is almost constant along 

both axes (it seems to be a function of the topology of the social network). In 

further work, we will demonstrate that the process of clusters formation is more 

favourable to maxi and mini as p increases. This means that the relative 

unsatisfiability of maxi and mini decreases with p. At the attractor, most agents 

perform repetitive behavior without changing anything at their behavioural level 

or meta-level. However, few agents, at the border of clusters, keep changing one 

of these two modifiable traits. We will see why in next section. 
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Figure 12 : Dependence of the rate of cooperators  at 
the attractor (100 time steps) in function of 
parameters p and the initial rate of cooperators Ini 
Coop. The rate is always above 9.5%. Cooperation is 
sustainable under all the conditions studied. The line 
represents the set of simulations corresponding to the 
area of parameters used in Figure 13 
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Figure 13 : Evolution of the distribution of 
metamimetic rules in function of p, for an initial rate of 
cooperation of 50%. We can see that conformists (up 
triangles) are predominant under all condition but maxi 
(circles) and mini (stars) agents do better in area concerned 
with high p than in those concerned with low p. Each point 
has been obtained with 10 runs. Error bars represent the 
standard deviation.   

d. At the border of social groups 
To understand why some agents are perpetually unsatisfied 

at the attractors and keep oscillating between several meta-

rules, we will take the example of a particular agent, Eidaid 

that hesitates perpetually between the conformism rule and 

the maxi rule. This agent is at the border between a 

conformist area and a maxi area (cf. figure 8 ). All her 

neighbours are defectors. It is easy to see why Eidaid can’t 

keep the conformist rule: the majority of its neighbours are 

maxi-agents. Then, each time Eidaid becomes conformist, it 

will update its rule to maxi the next period. On the other

distribution shows that the most successful agent in Eidaid’s n

conformist agent. The reason is that Eidaim has the chance 

neighbour, which is playing C. Thus, each time Eidaid adopts

copy Eidaim at the next period, and become conformist again

can say that Eidaim is frustrated. We can see here that the top

is crucial for this kind of phenomena. It is precisely because E

neighbours without having the same neighbourhood and thus, 

always hesitates between the two rules. The fact that this kind
Figure 14 : Neighbours of 
Edaid. Light grey agents are 
 hand, a study of payoffs 

eighbourhood is Eidaim, a 

to have an non-conformist 

 the maxi rule,  Eidaid will 

. Endlessly. In the case, we 

ology of the social network 

idaid wants to imitate some 

the same information that it 

 of configurations can only 
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happen at the border between two areas (of homogenous behaviors or meta-rules) with the 

fact that the whole population is strongly structured explains why there are so few 

frustrated agents. 

e. Failing to imitate 
To address the question of endogenously fixed distribution of mimetic rules, we 

should be able to consider systems starting from any initial distribution of metamimetic 

rules, and study its evolution. At this stage, we have to introduce a noisy component in 

the system since otherwise, the evolution of systems starting from a homogeneous type’s 

distribution would be trivial. We studied systems with noise at level ε as modelled for 

example in Young 2001. We considered that agents imitate according to their rule with a 

probability 1-ε, and adopt a random modifiable trait among all the possibilities with a 

probability ε. This noise could represent errors at the level of inference, copying, decision 

or action.  

To study the dependence of the initial distribution of rules on the final distribution 

we did several simulations with five different initial conditions for the distribution of 

mimetic rules: a uniform distribution, and the four homogeneous distributions (only maxi, 

only mini, etc.) The influence of the noise level was as presented above. We present here 

results of simulations with a low level of noise, after 2000 periods. Again, agents are 

memoryless and perceive only the current period payoffs. Parameters are: ε=0.005, p=0.3 

and Ini Coop=50%, (cf. Figure 15). We can see that the final distribution of rules is the 

same for the different initial conditions: around 80% of conformist agents, about 10% of 

non-conformists and about 5% of maxi and mini. The study of the level of cooperation 

across initial conditions reveals that this level varies between 51% and 60%. The reason is 

that the final distribution of meta-mimetic rules is mostly conformist, which mean that the 

systems at the sensitive to initial conditions.  On the other hand, the evolution of 

cooperation in first periods heavily depends on the composition of population at the meta-

level.  Consequently, we have a path-dependent dynamics on the behavioural level. The 

poor performances of maxi and mini compared to same simulation without noise (fig 8-a) 

can again be explained qualitatively by the unsatisfiability. Noise increases the absolute 

unsatisfiability of all rules since it introduces uncertainty, which causes the agents to take 

wrong decisions more often. However, conformists and non-conformists are less sensitive 

to noise than maxi and mini since their rules for imitation are indexed on densities 

(aggregated data), which are more stable under noise than last period payoffs of single 
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agents. Consequently noise has less impact on their unsatisfaction than on those of mini 

and maxi. The fact that the final proportions of metamimetic rules in these simulations do 

not depend on initial conditions on these proportions suggests that proportions of 

metamimetic rules are a property of environmental conditions (p and ε). Future studies 

will show that this is actually the fact: the final distribution of meta-rules in this game do 

not depends on the initial distribution of meta-rules or behaviors. It is a function of p and 

noise levels at the different levels of metamimetic chains.  
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Figure 15 : Influence of initial conditions in noisy games: The distribution 
of metamimetic rules at the attractor (period 2000) in function of the initial 
distribution of rules. Initial conditions on behaviors are 50% of cooperators. 
The first point, Uniform, stands for a uniform distribution of rules at the 
beginning of the simulation. Other points are for homogeneous initial 
distributions with one of the four types. We can see that final distributions 
are the same. 

 

Conclusions 

As heuristic for the modelling of human social systems, several scientists proposed 

to focus on models that include human specific cognitive capacities. The reason is that 

only such models should be able to explain the huge gap of complexity in social 

structures between animal's and human's societies. Following this heuristic, we proposed 

a schematic representation of reflexivity, a property that is well known to be a specificity 

of human cognition, in the framework of mimetic systems. This led us to the notion of 

metareflexive mimetic systems. To conciliate metareflexive mimetic systems with the 

requirement of bounded rationality, we defined what we have called meta-mimetic games. 

Those games have the particular properties that, first mimetic rules can be their own 

meta-rules, second, we get a meta-dynamics on mimetic rules without the need to specify 
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any other evolutionary process like, for example, a replicator dynamics. We further show 

with a first computational study around the spatial prisonner’s dilemma game, that these 

meta-dynamics exhibit strong attractors with heterogeneous population and patterns 

emergence.  In particular, we have seen that in the case of the spatial prisonner’s 

dilemma, cooperative structures emerge and are sustainable in all the domain of 

parameters studied even though agents are memoryless with non-selective strategies (all 

C or all D). This is due to the fact that in meta-mimetic games, players are not stuck to a 

single goal like payoffs maximisation, which generates the dilemma, but can change their 

goal under social influence.  In this way, they can locally collectively get out of the 

dilemma. 

This is only a first approach of metareflexive mimetic systems than opens the door 

for the endogenization of mimetic rules and other kinds of human’s traits (behaviors, 

update time frequencies, preferences, etc). However, we have tried to show that 

metareflexive dynamics are a fascinating field of investigations with rich spatio-temporal 

patterns concerning the traits studied (here imitation rules and behaviors) and numerous 

possibilities of extensions.  We expect future works to take several directions: 

- 1.  As already mentioned, there is a lot of work to do in order to link this 

framework to existing theories related to human behaviour i.e. inference, 

memory and learning. Inference deals with the way people extract information 

from their environment and in particular, how theyinfer the rules others are 

usingwhat are the error rates during these processes and how it could be 

formalized. Our framework is therefore closely linked to this topic. In effect, 

we might expect that some rules are easier to infer or are less error prone, 

which will have as a consequence the increase in the satisfiability of their 

users, and thus their proportion in population. Memory can be used mainly to 

increase the space of the rules considered by increasing the number of event 

they are build on. For example, we considered here memoryless agents that 

can establish judgment only on the current round. It could be advantageous for 

maxi-agents for example, to consider the averaged maximum payoffs on a 

given number of rounds, this maximum number being bound by the memory 

size of the agent. In that case, the time window would be part of the 

description of a maxi-rule and therefore will be endogenous. Learning is 
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perhaps the domain where research can be the most exciting. The most 

sophisticated learning method will never provide the learning criteria; it is just 

not the scope of learning. On the other hand, metamimetic games provide a 

way to consider endogenous goals, formed on what agents can perceive, but 

the way agents can improve their behaviors with individual learning to achieve 

these goals is not modelized. The integration of both conceptions in a same 

framework would then enable to study the all chain of the decision processes. 

- 2. We saw that environmental conditions were crucial to determine the 

dynamics and especially the level of noise in the system. Yet, it is desirable to 

give particular attention to the modeling of noise at the different levels of the 

cognitive processes and see its influence on the dynamics. It is here a quite 

challenging program that will surely give interesting evidences of the 

structuring power of noise in these particular dynamical systems.  

- 3. In a cultural evolution perspective, we might ask what is the evolutionary 

advantage of metareflexive mimetic systems and their impact on cultural 

evolution.  This would assure us that the reflexivity is not just a gadget 

disconnected from the evolutionary paradigm. The first study here suggests 

that reflexivity enables high level of cooperation in population, giving an 

evolutionary advantage to groups of metareflexive agents. This is only a 

preliminary work and the study must be continued. In particular, we could see 

if the emergence of reflexivity as described here is a plausible step in a 

scenario for the evolution of human societies.  This may leads to new 

perspectives in the framework of the gene-culture co-evolutionary theory. 
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Appendix I : Methodology 

The algorithm used for the simulations presented in this paper is the following: 

Set up of the game:  

- Give a value for p (here .1≤p≤.45). 

- Neighbourhood composed by the eight adjacent cells. Toric grid. 

Initial Conditions: 

- Give the spatial distribution of imitation rules. 

- Give the spatial distribution of behaviours. 

At each period, for each agent:   

- The imitation rule is used to update itself. An agent changes her rule if there 

are some neighbours strictly more successful than her. For example, if agent 

A had the Conformist type and if the majority of her neighbours have turned 

to Maxi since last round, A will adopt the Maxi rule.  

- The imitation rule (eventually new) is used to update the behaviour. If A, a 

Maxi agent, played C last round but a D-player did strictly better than all A’s 

neighbors (A included), A will become a D-player. 

- The agent plays with her height neighbours. 

- The new payoffs of agents are computed by summation of the height scores 

of the two-players games. 
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Appendix II: The metamimetic game and the replicator dynamics 

Proposition : The discrete replicator dynamics is equivalent to a metamimetic 

game on a complete graph with a single meta-rule. 

 

 Proof : 

This is straightforward since what is important is that the master equation of 

metamimetic games and the discrete replicator dynamics equation both belong to 

the category of balance equations. However, it points out some differences 

between the two kinds of dynamics.  The standard form of discrete replicator 

dynamics for a population of strategies (1,..,n) with proportions σ(t) ( )tn
t pp ,...,1=  

 can be written (Hofbauer and Sigmund  1988): 
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Let us consider a metamimetic game on a complete graph with a single rule r and 

a set of behaviors (1,..,n). The metamimetic chains can then be named after the 

associated behavior. Let’s consider for the rule r the following stochastic 

metamimetic rule: an agent A will imitate a neighbor A’ with a behavior j with a 

probability proportional to 
)(

)(
^

tfa
fa tj

+

+ σ
. Since each neighborhood contain the 

whole population (the graph is complete), we then have 
t

j

t
jjt

i p
tfa
pfajFji
)(

)()(:, ^
+

+=∀ . 

We replace this relation in the master equation:  
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The discrete replicator dynamics translated in terms of metamimetic dynamics is 

thus equivalent to the particular case of a metamimetic game with a single meta-

rule that can be formulated by “imitate neighbors at random proportionally to their 

fitness”.  

 

 In particular, we can see that metamimetic dynamics are not akin to replicator dynamics 

as soon as there is more than one meta-rule. 
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